Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » 1008.3570

 Article overview


Temperature-induced crossovers in the static roughness of a one-dimensional interface
Elisabeth Agoritsas ; Vivien Lecomte ; Thierry Giamarchi ;
Date 20 Aug 2010
AbstractAt finite temperature and in presence of disorder, a one-dimensional elastic interface displays different scaling regimes at small and large lengthscales. Using a replica approach and a Gaussian Variational Method (GVM), we explore the consequences of a finite interface width $xi$ on the small-lengthscale fluctuations. We compute analytically the static roughness $B(r)$ of the interface as a function of the distance $r$ between two points on the interface. We focus on the case of short-range elasticity and random-bond disorder. We show that for a finite width $xi$ two temperature regimes exist. At low temperature, the expected thermal and random-manifold regimes, respectively for small and large scales, connect via an intermediate ’modified’ Larkin regime, that we determine. This regime ends at a temperature-independent characteristic ’Larkin’ length. Above a certain ’critical’ temperature that we identify, this intermediate regime disappears. The thermal and random-manifold regimes connect at a single crossover lengthscale, that we compute. This is also the expected behavior for zero width. Using a directed polymer description, we also study via a second GVM procedure and generic scaling arguments, a modified toy model that provides further insights on this crossover. We discuss the relevance of the two GVM procedures for the roughness at large lengthscale in those regimes. In particular we analyze the scaling of the temperature-dependent prefactor in the roughness $B(r)sim T^{2 ext{ horn}} r^{2 zeta}$ and its corresponding exponent $ ext{ horn}$. We briefly discuss the consequences of those results for the quasistatic creep law of a driven interface, in connection with previous experimental and numerical studies.
Source arXiv, 1008.3570
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica