Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

25 April 2024
 
  » arxiv » 1009.3925

 Article overview



Absolute Determination of the 22Na(p,g) Reaction Rate in Novae
A. L. Sallaska ; C. Wrede ; A. Garcia ; D. W. Storm ; T. A. D. Brown ; C. Ruiz ; K. A. Snover ; D. F. Ottewell ; L. Buchmann ; C. Vockenhuber ; D. A. Hutcheon ; J. A. Caggiano ; J. Jose ;
Date 20 Sep 2010
AbstractGamma-ray telescopes in orbit around the Earth are searching for evidence of the elusive radionuclide 22Na produced in novae. Previously published uncertainties in the dominant destructive reaction, 22Na(p,g)23Mg, indicated new measurements in the proton energy range of 150 to 300 keV were needed to constrain predictions. We have measured the resonance strengths, energies, and branches directly and absolutely by using protons from the University of Washington accelerator with a specially designed beamline, which included beam rastering and cold vacuum protection of the 22Na implanted targets. The targets, fabricated at TRIUMF-ISAC, displayed minimal degradation over a ~ 20 C bombardment as a result of protective layers. We avoided the need to know the stopping power, and hence the target composition, by extracting resonance strengths from excitation functions integrated over proton energy. Our measurements revealed that resonance strengths for E_p = 213, 288, 454, and 610 keV are stronger by factors of 2.4 to 3.2 than previously reported. Upper limits have been placed on proposed resonances at 198-, 209-, and 232-keV. We have re-evaluated the 22Na(p,g) reaction rate, and our measurements indicate the resonance at 213 keV makes the most significant contribution to 22Na destruction in novae. Hydrodynamic simulations including our rate indicate that the expected abundance of 22Na ejecta from a classical nova is reduced by factors between 1.5 and 2, depending on the mass of the white-dwarf star hosting the nova explosion.
Source arXiv, 1009.3925
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica