Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

25 April 2024
 
  » arxiv » nucl-ex/0202023

 Article overview



Multifragmentation and the Phase Transition: A Systematic Study of the MF of 1A GeV Au, La, and Kr
B. K. Srivastava et al. ;
Date 27 Feb 2002
Journal Phys.Rev. C65 (2002) 054617
Subject nucl-ex
AffiliationFor the EOS Collaboration
AbstractA systematic analysis of the multifragmentation (MF) in fully reconstructed events from 1A GeV Au, La and Kr collisions with C has been performed. This data is used to provide a definitive test of the variable volume version of the statistical multifragmentation model (SMM). A single set of SMM parameters directly determined by the data and the semi-empiricalmass formula are used after the adjustable inverse level density parameter, $epsilon_{o}$ is determined by the fragment distributions. The results from SMM for second stage multiplicity, size of the biggest fragment and the intermediate mass fragments are in excellent agreement with the data. Multifragmentation thresholds have been obtained for all three systems using SMM prior to secondary decay. The data indicate that both thermal excitation energy $E_{th}^{*}$ and the isotope ratio temperature $T_{He-DT}$ decrease with increase in system size at the critical point. The breakup temperature obtained from SMM also shows the same trend as seen in the data. The SMM model is used to study the nature of the MF phase transition. The caloric curve for Kr exhibits back-bending (finite latent heat) while the caloric curves for Au and La are consistent with a continuous phase transition (nearly zero latent heat) and the values of the critical exponents $ au$, $eta$ and $gamma$, both from data and SMM, are close to those for a ’liquid-gas’ system for Au and La. We conclude that the larger Coulomb expansion energy in Au and La reduces the latent heat required for MF and changes the nature of the phase transition. Thus the Coulomb energy plays a major role in nuclear MF.
Source arXiv, nucl-ex/0202023
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica