Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

19 April 2024
 
  » arxiv » nucl-th/0202037

 Article overview


The three-nucleon bound state using realistic potential models
A. Nogga ; A. Kievsky ; H. Kamada ; W. Gloeckle ; L.E. Marcucci ; S. Rosati ; M. Viviani ;
Date 11 Feb 2002
Journal Phys.Rev. C67 (2003) 034004
Subject nucl-th
AbstractThe bound states of $^3$H and $^3$He have been calculated using the Argonne $v_{18}$ plus the Urbana three-nucleon potential. The isospin $T=3/2$ state have been included in the calculations as well as the $n$-$p$ mass difference. The $^3$H-$^3$He mass difference has been evaluated through the charge dependent terms explicitly included in the two-body potential. The calculations have been performed using two different methods: the solution of the Faddeev equations in momentum space and the expansion on the correlated hyperspherical harmonic basis. The results are in agreement within 0.1% and can be used as benchmark tests. Results for the CD-Bonn interaction are also presented. It is shown that the $^3$H and $^3$He binding energy difference can be predicted model independently.
Source arXiv, nucl-th/0202037
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica