Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » physics/0201021

 Article overview


Self-consistent model of ultracold atomic collisions and Feshbach resonances in tight harmonic traps
E. L. Bolda ; E. Tiesinga ; P. S. Julienne ;
Date 10 Dec 2001
Subject Atomic Physics | physics.atom-ph
AbstractWe consider the problem of cold atomic collisions in tight traps, where the absolute scattering length may be larger than the trap size. As long as the size of the trap ground state is larger than a characteristic length of the van der Waals potential, the energy eigenvalues can be computed self-consistently from the scattering amplitude for untrapped atoms. By comparing with the exact numerical eigenvalues of the trapping plus interatomic potentials, we verify that our model gives accurate eigenvalues up to milliKelvin energies for single channel s-wave scattering of $^{23}$Na atoms in an isotropic harmonic trap, even when outside the Wigner threshold regime. Our model works also for multi-channel scattering, where the scattering length can be made large due to a magnetically tunable Feshbach resonance.
Source arXiv, physics/0201021
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica