Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 1103.6032

 Article overview



A VLBA survey of the core shift effect in AGN jets I. Evidence for dominating synchrotron opacity
K. V. Sokolovsky ; Y. Y. Kovalev ; A. B. Pushkarev ; A. P. Lobanov ;
Date 30 Mar 2011
AbstractThe effect of a frequency dependent shift of the VLBI core position (known as the "core shift") has been predicted more than three decades ago and has since been observed in a few sources, but often within a narrow frequency range. This effect has important astrophysical and astrometric applications. In order to achieve a broader understanding of the core shift effect and the physics behind it we have conducted a dedicated survey with NRAO’s Very Long Baseline Array (VLBA). We have used the VLBA to image 20 pre-selected sources simultaneously at nine frequencies in the 1.4-15.4 GHz range. The core position at each frequency was measured by referencing it to a bright, optically thin feature in the jet. A significant core shift has been successfully measured in each of the twenty sources observed. The median value of the core shift was found to be 1.21 mas if measured between 1.4 and 15.4 GHz, and 0.24 mas between 5.0 and 15.4 GHz. The core position, r, as a function of frequency, n, is found to be consistent with a "r proportional to 1/n" law. Such behavior is predicted by the Blandford & Koenigl model of a purely synchrotron self-absorbed conical jet in equipartition. No systematic deviation from unity of the power law index in the r(n) relation has been convincingly detected. We conclude that neither free-free absorption nor gradients in pressure and/or density in the jet itself and in the ambient medium surrounding the jet play a significant role in the sources observed within the 1.4-15.4 GHz frequency range. These results support the interpretation of the parsec-scale core as a continuous Blandford-Koenigl type jet with smooth gradients of physical properties along it.
Source arXiv, 1103.6032
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica