Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 1104.4680

 Article overview



Rounding Semidefinite Programming Hierarchies via Global Correlation
Boaz Barak ; Prasad Raghavendra ; David Steurer ;
Date 25 Apr 2011
AbstractWe show a new way to round vector solutions of semidefinite programming (SDP) hierarchies into integral solutions, based on a connection between these hierarchies and the spectrum of the input graph. We demonstrate the utility of our method by providing a new SDP-hierarchy based algorithm for constraint satisfaction problems with 2-variable constraints (2-CSP’s).
More concretely, we show for every 2-CSP instance I a rounding algorithm for r rounds of the Lasserre SDP hierarchy for I that obtains an integral solution that is at most eps worse than the relaxation’s value (normalized to lie in [0,1]), as long as r > kcdot ank_{geq heta}(Ins)/poly(e) ;, where k is the alphabet size of I, $ heta=poly(e/k)$, and $ ank_{geq heta}(Ins)$ denotes the number of eigenvalues larger than $ heta$ in the normalized adjacency matrix of the constraint graph of $Ins$.
In the case that $Ins$ is a uniquegames instance, the threshold $ heta$ is only a polynomial in $e$, and is independent of the alphabet size. Also in this case, we can give a non-trivial bound on the number of rounds for emph{every} instance. In particular our result yields an SDP-hierarchy based algorithm that matches the performance of the recent subexponential algorithm of Arora, Barak and Steurer (FOCS 2010) in the worst case, but runs faster on a natural family of instances, thus further restricting the set of possible hard instances for Khot’s Unique Games Conjecture.
Our algorithm actually requires less than the $n^{O(r)}$ constraints specified by the $r^{th}$ level of the Lasserre hierarchy, and in some cases $r$ rounds of our program can be evaluated in time $2^{O(r)}poly(n)$.
Source arXiv, 1104.4680
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica