Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

25 April 2024
 
  » arxiv » 1105.4647

 Article overview



Kepler-10c, a 2.2-Earth radius transiting planet in a multiple system
Francois Fressin ; Guillermo Torres ; Jean-Michel Desert ; David Charbonneau ; Natalie M. Batalha ; Jonathan J. Fortney ; Jason F. Rowe ; Christopher Allen ; William J. Borucki ; Timothy M. Brown ; Stephen T. Bryson ; David R. Ciardi ; William D. Cochran ; Drake Deming ; Edward W. Dunham ; Daniel C. Fabrycky ; Thomas N. Gautier III ; Ronald L. Gilliland ; Christopher E. Henze ; Matthew J. Holman ; Steve B. Howell ; Jon M. Jenkins ; Karen Kinemuchi ; Heather Knutson ; David G. Koch ; David W. Latham ; Jack J. Lissauer ; Geoffrey W. Marcy ; Darin Ragozzine ; Dimitar D. Sasselov ; Martin Still ; Peter Tenenbaum ; Kamal Uddin ;
Date 24 May 2011
AbstractThe Kepler Mission has recently announced the discovery of Kepler-10 b, the smallest exoplanet discovered to date and the first rocky planet found by the spacecraft. A second, 45-day period transit-like signal present in the photometry from the first eight months of data could not be confirmed as being caused by a planet at the time of that announcement. Here we apply the light-curve modeling technique known as BLENDER to explore the possibility that the signal might be due to an astrophysical false positive (blend). To aid in this analysis we report the observation of two transits with the Spitzer Space Telescope at 4.5 {mu}m. When combined they yield a transit depth of 344 pm 85 ppm that is consistent with the depth in the Kepler passband (376 pm 9 ppm, ignoring limb darkening), which rules out blends with an eclipsing binary of a significantly different color than the target. Using these observations along with other constraints from high resolution imaging and spectroscopy we are able to exclude the vast majority of possible false positives. We assess the likelihood of the remaining blends, and arrive conservatively at a false alarm rate of 1.6 imes 10-5 that is small enough to validate the candidate as a planet (designated Kepler-10 c) with a very high level of confidence. The radius of this object is measured to be Rp = 2.227+0.052 -0.057 Earth radii. Kepler-10 c represents another example (with Kepler-9 d and Kepler-11 g) of statistical "validation" of a transiting exoplanet, as opposed to the usual "confirmation" that can take place when the Doppler signal is detected or transit timing variations are measured. It is anticipated that many of Kepler’s smaller candidates will receive a similar treatment since dynamical confirmation may be difficult or impractical with the sensitivity of current instrumentation.
Source arXiv, 1105.4647
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica