Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 1108.2412

 Article overview



Effect of Different Stellar Galactic Environments on Planetary Discs I: The Solar Neighbourhood and the Birth Cloud of the Sun
Juan J. Jimenez-Torres ; Barbara Pichardo ; George Lake ; Henry Throop ;
Date 11 Aug 2011
AbstractWe have computed trajectories, distances and times of closest approaches to the Sun by stars in the Solar neighbourhood with known position, radial velocity and proper motions. For this purpose we have used a full potential model of the Galaxy that reproduces the local z-force, the Oort constants, the local escape velocity, and the rotation curve of the Galaxy. From our sample we constructed initial conditions, within observational uncertainties, with a Monte Carlo scheme for the twelve most suspicious candidates because of their small tangential motion. We find that the star Gliese 710 will have the closest approach to the Sun, with a distance of approximately 0.34 pc at 1.36 Myr in the future. We show that the effect of a flyby with the characteristics of Gliese 710 on a 100 AU test particle disk representing the Solar system is negligible. However, since there is a lack of 6D data for a large percentage of stars in the Solar neighbourhood, closer approaches may exist. We calculate parameters of passing stars that would cause noticeable effects on the Solar disk. Regarding the birth cloud of the Sun, we performed experiments to reproduce roughly the observed orbital parameters such as eccentricities and inclinations of the Kuiper Belt. It is known now that in Galactic environments, such as stellar formation regions, the stellar densities of new born stars, are high enough to produce close encounters within 200 AU. Moreover, in these Galactic environments, the velocity dispersion is relatively low, typically approximately 1-3 km s-1.We find that with a velocity dispersion of approximately 1 km s-1 and an approach distance of about 150 AU, typical of these regions, we obtain approximately the eccentricities and inclinations seen in the current Solar system. Simple analytical calculations of stellar encounters effects on the Oort cloud are presented.
Source arXiv, 1108.2412
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica