Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

18 April 2024
 
  » arxiv » 1109.1312

 Article overview


Type Ia Supernova Carbon Footprints
R. C. Thomas ; G. Aldering ; C. Aragon ; P. Antilogus ; S. Bailey ; C. Baltay ; S. Bongard ; C. Buton ; A. Canto ; M. Childress ; N. Chotard ; Y. Copin ; H. K. Fakhouri ; E. Gangler ; E. Y. Hsiao ; M. Kerschhaggl ; M. Kowalski ; S. Loken ; P. Nugent ; K. Paech ; R. Pain ; E. Pecontal ; R. Pereira ; S. Perlmutter ; D. Rabinowitz ; M. Rigault ; D. Rubin ; K. Runge ; R. Scalzo ; G. Smadja ; C. Tao ; B. A. Weaver ; C. Wu ; P. J. Brown ; P. A. Milne ;
Date 7 Sep 2011
AbstractWe present convincing evidence of unburned carbon at photospheric velocities in new observations of 5 Type Ia supernovae (SNe Ia) obtained by the Nearby Supernova Factory. These SNe are identified by examining 346 spectra from 124 SNe obtained before +2.5 d relative to maximum. Detections are based on the presence of relatively strong C II 6580 absorption "notches" in multiple spectra of each SN, aided by automated fitting with the SYNAPPS code. Four of the 5 SNe in question are otherwise spectroscopically unremarkable, with ions and ejection velocities typical of SNe Ia, but spectra of the fifth exhibits high-velocity (v > 20,000 km/s) Si II and Ca II features. On the other hand, the light curve properties are preferentially grouped, strongly suggesting a connection between carbon-positivity and broad band light curve/color behavior: Three of the 5 have relatively narrow light curves but also blue colors, and a fourth may be a dust-reddened member of this family. Accounting for signal-to-noise and phase, we estimate that 22 +10/-6% of SNe Ia exhibit spectroscopic C II signatures as late as -5 d with respect to maximum. We place these new objects in the context of previously recognized carbon-positive SNe Ia, and consider reasonable scenarios seeking to explain a physical connection between light curve properties and the presence of photospheric carbon. We also examine the detailed evolution of the detected carbon signatures and the surrounding wavelength regions to shed light on the distribution of carbon in the ejecta. Our ability to reconstruct the C II 6580 feature in detail under the assumption of purely spherical symmetry casts doubt on a "carbon blobs" hypothesis, but does not rule out all asymmetric models. A low volume filling factor for carbon, combined with line-of-sight effects, seems unlikely to explain the scarcity of detected carbon in SNe Ia by itself.
Source arXiv, 1109.1312
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica