Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'488'730
Articles rated: 2609

29 March 2024
 
  » arxiv » 1109.4398

 Article overview


Missing Energy Signatures of Dark Matter at the LHC
Patrick J. Fox ; Roni Harnik ; Joachim Kopp ; Yuhsin Tsai ;
Date Tue, 20 Sep 2011 19:15:25 GMT (1890kb,D)
AbstractWe use ATLAS and CMS searches in the mono-jet + missing energy and mono-photon + missing energy final state to set limits on the couplings of dark matter to quarks and gluons. Working in an effective field theory framework we compare several existing mono-jet analyses and find that searches with high p_T cuts are more sensitive to dark matter. We constrain the suppression scale of the effective dark matter-Standard Model interactions, and convert these limits into bounds on the cross sections relevant to direct and indirect detection. We find that, for certain types of operators, in particular spin-independent dark matter-gluon couplings and spin-dependent dark matter-quark couplings, LHC constraints from the mono-jet channel are competitive with, or superior to, limits from direct searches up to dark matter masses of order 1 TeV. Comparing to indirect searches, we exclude, at 90% C.L., dark matter annihilating to quarks with the annihilation cross section of a thermal relic for masses below ~ 15-70 GeV, depending on the Lorentz structure of the effective couplings. Mono-photon limits are somewhat weaker than mono-jet bounds, but still provide an important cross check in the case of a discovery in mono-jets. We also discuss the possibility that dark matter--Standard Model interactions at LHC energies cannot be described by effective operators, in which case we find that constraints can become either significantly stronger, or considerably weaker, depending on the mass and width of the intermediate particle. We also discuss the special case of dark matter coupling to the Higgs boson, and we show that searches for invisible Higgs decays would provide superior sensitivity, particularly for a light Higgs mass and light dark matter.
Source arXiv, 1109.4398
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica