Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3644
Articles: 2'497'992
Articles rated: 2609

16 April 2024
 
  » arxiv » 1109.5476

 Article overview


Chromosphere of K giant stars Geometrical extent and spatial structure detection
P. Berio ; T. Merle ; F. Thevenin ; D. Bonneau ; D. Mourard ; O. Chesneau ; O. Delaa ; R. Ligi ; N. Nardetto ; K. Perraut ; B. Pichon ; P. Stee ; I. Tallon-Bosc ; J.M. Clausse ; A. Spang ; H. McAlister ; T. ten Brummelaar ; J. Sturmann ; L. Sturmann ; N. Turner ; C. Farrington ; P.J. Goldfinger ;
Date 26 Sep 2011
AbstractWe aim to constrain the geometrical extent of the chromosphere of non-binary K giant stars and detect any spatial structures in the chromosphere. We performed observations with the CHARA interferometer and the VEGA beam combiner at optical wavelengths. We observed seven non-binary K giant stars. We measured the ratio of the radii of the photosphere to the chromosphere using the interferometric measurements in the Halpha and the Ca II infrared triplet line cores. For beta Ceti, spectro-interferometric observations are compared to an non-local thermal equilibrium (NLTE) semi-empirical model atmosphere including a chromosphere. The NLTE computations provide line intensities and contribution functions that indicate the relative locations where the line cores are formed and can constrain the size of the limb-darkened disk of the stars with chromospheres. We measured the angular diameter of seven K giant stars and deduced their fundamental parameters: effective temperatures, radii, luminosities, and masses. We determined the geometrical extent of the chromosphere for four giant stars. The chromosphere extents obtained range between 16% to 47% of the stellar radius. The NLTE computations confirm that the Ca II/849 nm line core is deeper in the chromosphere of ? Cet than either of the Ca II/854 nm and Ca II/866 nm line cores. We present a modified version of a semi-empirical model atmosphere derived by fitting the Ca II triplet line cores of this star. In four of our targets, we also detect the signature of a differential signal showing the presence of asymmetries in the chromospheres. Conclusions. It is the first time that geometrical extents and structure in the chromospheres of non-binary K giant stars are determined by interferometry. These observations provide strong constrains on stellar atmosphere models.
Source arXiv, 1109.5476
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica