Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » 1112.1245

 Article overview


A spectral sequence for parallelized persistence
David Lipsky ; Primoz Skraba ; Mikael Vejdemo-Johansson ;
Date 6 Dec 2011
AbstractWe approach the problem of the computation of persistent homology for large datasets by a divide-and-conquer strategy. Dividing the total space into separate but overlapping components, we are able to limit the total memory residency for any part of the computation, while not degrading the overall complexity much. Locally computed persistence information is then merged from the components and their intersections using a spectral sequence generalizing the Mayer-Vietoris long exact sequence.
We describe the Mayer-Vietoris spectral sequence and give details on how to compute with it. This allows us to merge local homological data into the global persistent homology. Furthermore, we detail how the classical topology constructions inherent in the spectral sequence adapt to a persistence perspective, as well as describe the techniques from computational commutative algebra necessary for this extension.
The resulting computational scheme suggests a parallelization scheme, and we discuss the communication steps involved in this scheme. Furthermore, the computational scheme can also serve as a guideline for which parts of the boundary matrix manipulation need to co-exist in primary memory at any given time allowing for stratified memory access in single-core computation. The spectral sequence viewpoint also provides easy proofs of a homology nerve lemma as well as a persistent homology nerve lemma. In addition, the algebraic tools we develop to approch persistent homology provide a purely algebraic formulation of kernel, image and cokernel persistence (D. Cohen-Steiner, H. Edelsbrunner, J. Harer, and D. Morozov. Persistent homology for kernels, images, and cokernels. In Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1011-1020. Society for Industrial and Applied Mathematics, 2009.)
Source arXiv, 1112.1245
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica