Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » 1112.6429

 Article overview


Anisotropic Ginzburg-Landau and Lawrence-Doniach Models for Layered Ultracold Fermi Gases
Mauro Iazzi ; Stefano Fantoni ; Andrea Trombettoni ;
Date 29 Dec 2011
AbstractWe study the anisotropic Ginzburg-Landau and Lawrence-Doniach models describing a layered superfluid ultracold Fermi gas in optical lattices. We derive the coefficients of the anisotropic Ginzburg-Landau and the mass tensor as a function of anisotropy, filling and interaction, showing that near the unitary limit the effective anisotropy of the masses is significantly reduced. The anisotropy parameter is shown to vary in realistic setups in a wide range of values. We also derive the Lawrence-Doniach model - often used to describe the 2D-3D dimensional crossover in layered superconductors - for a layered ultracold Fermi gas, obtaining a relation between the interlayer Josephson couplings and the Ginzburg-Landau masses. Comparing to the Ginzburg-Landau description, we find that the region of validity of the Lawrence-Doniach model is near the unitary limit.
Source arXiv, 1112.6429
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica