Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'503'724
Articles rated: 2609

24 April 2024
 
  » arxiv » 1201.3795

 Article overview


The mixing time of the Newman--Watts small world
Louigi Addario-Berry ; Tao Lei ;
Date 18 Jan 2012
Abstract"Small worlds" are large systems in which any given node has only a few connections to other points, but possessing the property that all pairs of points are connected by a short path, typically logarithmic in the number of nodes. The use of random walks for sampling a uniform element from a large state space is by now a classical technique; to prove that such a technique works for a given network, a bound on the mixing time is required. However, little detailed information is known about the behaviour of random walks on small-world networks, though many predictions can be found in the physics literature. The principal contribution of this paper is to show that for a famous small-world random graph model known as the Newman--Watts small world, the mixing time is of order (log n)^2. This confirms a prediction of Richard Durrett, who proved a lower bound of order (log n)^2 and an upper bound of order (log n)^3.
Source arXiv, 1201.3795
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica