Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

19 April 2024
 
  » arxiv » 1201.5268

 Article overview


Homogenous and heterogeneous magnetism in (Zn,Co)O
M. Sawicki ; E. Guziewicz ; M. I. Lukasiewicz ; O. Proselkov ; I. A. Kowalik ; W. Lisowski ; P. Dluzewski ; A. Wittlin ; M. Jaworski ; A. Wolska ; W. Paszkowicz ; R. Jakiela ; B. S. Witkowski ; L. Wachnicki ; M. T. Klepka ; F. J. Luque ; D. Arvanitis ; J. W. Sobczak ; M. Krawczyk ; A. Jablonski ; W. Stefanowicz ; D. Sztenkiel ; M. Godlewski ; T. Dietl ;
Date 25 Jan 2012
AbstractA series of (ZnO)m(CoO)n digital alloys and superlattices grown by atomic layer deposition has been investigated by a range of experimental methods. The data provide evidences that the Co interdiffusion in the digital alloy structures is sufficient to produce truly random Zn1-xCoxO mixed crystals with x up to 40%. Conversely, in the superlattice structures the interdiffusion is not strong enough to homogenize the Co content along the growth direction results in the formation of (Zn,Co)O films with spatially modulated Co concentrations. All structures deposited at 160circC show magnetic properties specific to dilute magnetic semiconductors with localized spins S = 3/2 coupled by strong but short range antiferromagnetic interactions that lead to low temperature spin-glass freezing.
It is demonstrated that ferromagnetic-like features, visible exclusively in layers grown at 200circC and above, are associated with an interfacial mesh of metallic Co granules residing between the substrate and the (Zn,Co)O layer. This explains why the magnitude of ferromagnetic signal is virtually independent of the film thickness as well as elucidates the origin of magnetic anisotropy. Our conclusions have been derived for layers in which the Co concentration, distribution, and aggregation have been determined by: secondary-ion mass spectroscopy, electron probe micro-analysis, high-resolution transmission electron microscopy with capabilities allowing for chemical analysis; x-ray absorption near-edge structure; extended x-ray absorption fine-structure; x-ray photoemission spectroscopy, and x-ray circular magnetic dichroism. Macroscopic properties of these layers have been investigated by superconducting quantum interference device magnetometery and microwave dielectric losses allowing to confirm the important role of metallic inclusions.
Source arXiv, 1201.5268
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica