Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » 1202.2467

 Article overview


The HARPS search for southern extra-solar planets XXXV. Super-Earths around the M-dwarf neighbors Gl433 and Gl667C
X. Delfosse ; X. Bonfils ; T. Forveille ; S. Udry ; M. Mayor ; F. Bouchy ; M. Gillon ; C. Lovis ; V. Neves ; F. Pepe ; C. Perrier ; D. Queloz ; N. C. Santos ; D. Ségransan ;
Date 11 Feb 2012
AbstractM dwarfs have been found to often have super-Earth planets with short orbital periods. Such stars are thus preferential targets in searches for rocky or ocean planets in the solar neighbourhood. In a recent paper (Bonfils et al. 2011), we announced the discovery of respectively 1 and 2 low mass planets around the M1.5V stars Gl433 and Gl667C. We found those planets with the HARPS spectrograph on the ESO~3.6-m telescope at La Silla Observatory, from observations obtained during the Guaranteed Time Observing program of that instrument. We have obtained additional HARPS observations of those two stars, for a total of respectively 67 and 179 Radial Velocity measurements for Gl433 and Gl667C, and present here an orbital analysis of those extended data sets and our main conclusion about both planetary systems. One of the three planets, Gl667Cc, has a mass of only M2.sin(i)~4.25 M_earth and orbits in the central habitable zone of its host star. It receives just 10% less stellar energy from Gl667C than the Earth receives from the Sun. However planet evolution in habitable zone can be very different if the host star is a M dwarf or a solar-like star, without necessarily questioning the presence of water. The two other planets, Gl433b and Gl667Cb, both have M2.sin(i) of ~5.5 M_earth and periods of ~7 days. The Radial Velocity measurements of both stars contain longer time scale signals, which we fit as longer period Keplerians. For Gl433 that signal probably originates in a Magnetic Cycle, while a longer time span will be needed to conclude for Gl667C. The metallicity of Gl433 is close to solar, while Gl667C is metal poor with [Fe/H] ~ -0.6. This reinforces the recent conclusion that the occurence of Super-Earth planets does not strongly correlate with stellar metallicity.
Source arXiv, 1202.2467
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica