Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3644
Articles: 2'499'343
Articles rated: 2609

16 April 2024
 
  » arxiv » 1205.0044

 Article overview


A Singly-Exponential Time Algorithm for Computing Nonnegative Rank
Ankur Moitra ;
Date 1 May 2012
AbstractHere, we give an algorithm for deciding if the nonnegative rank of a matrix $M$ of dimension $m imes n$ is at most $r$ which runs in time $(nm)^{O(r^2)}$. This is the first exact algorithm that runs in time singly-exponential in $r$. This algorithm (and earlier algorithms) are built on methods for finding a solution to a system of polynomial inequalities (if one exists). Notably, the best algorithms for this task run in time exponential in the number of variables but polynomial in all of the other parameters (the number of inequalities and the maximum degree).
Hence these algorithms motivate natural algebraic questions whose solution have immediate {em algorithmic} implications: How many variables do we need to represent the decision problem, does $M$ have nonnegative rank at most $r$? A naive formulation uses $nr + mr$ variables and yields an algorithm that is exponential in $n$ and $m$ even for constant $r$. (Arora, Ge, Kannan, Moitra, STOC 2012) recently reduced the number of variables to $2r^2 2^r$, and here we exponentially reduce the number of variables to $2r^2$ and this yields our main algorithm. In fact, the algorithm that we obtain is nearly-optimal (under the Exponential Time Hypothesis) since an algorithm that runs in time $(nm)^{o(r)}$ would yield a subexponential algorithm for 3-SAT .
Our main result is based on establishing a normal form for nonnegative matrix factorization - which in turn allows us to exploit algebraic dependence among a large collection of linear transformations with variable entries. Additionally, we also demonstrate that nonnegative rank cannot be certified by even a very large submatrix of $M$, and this property also follows from the intuition gained from viewing nonnegative rank through the lens of systems of polynomial inequalities.
Source arXiv, 1205.0044
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica