Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 1206.5238

 Article overview



Can we predict the global magnetic topology of a pre-main sequence star from its position in the Hertzsprung-Russell diagram?
S. G. Gregory ; J.-F. Donati ; J. Morin ; G. A. J. Hussain ; N. J. Mayne ; L. A. Hillenbrand ; M. Jardine ;
Date 22 Jun 2012
AbstractZDI studies have shown that the magnetic fields of T Tauri stars can be significantly more complex than a simple dipole and can vary markedly between sources. We collect and summarize the magnetic field topology information obtained to date and present Hertzsprung-Russell (HR) diagrams for the stars in the sample. Intriguingly, the large scale field topology of a given pre-main sequence (PMS) star is strongly dependent upon the stellar internal structure, with the strength of the dipole component of its multipolar magnetic field decaying rapidly with the development of a radiative core. Using the observational data as a basis, we argue that the general characteristics of the global magnetic field of a PMS star can be determined from its position in the HR diagram. Moving from hotter and more luminous to cooler and less luminous stars across the PMS of the HR diagram, we present evidence for four distinct magnetic topology regimes. Stars with large radiative cores, empirically estimated to be those with a core mass in excess of ~40 per cent of the stellar mass, host highly complex and dominantly non-axisymmetric magnetic fields, while those with smaller radiative cores host axisymmetric fields with field modes of higher order than the dipole dominant (typically, but not always, the octupole). Fully convective stars stars above ~0.5 MSun appear to host dominantly axisymmetric fields with strong (kilo-Gauss) dipole components. Based on similarities between the magnetic properties of PMS stars and main sequence M-dwarfs with similar internal structures, we speculate that a bistable dynamo process operates for lower mass stars (<~0.5 MSun at an age of a few Myr) and that they will be found to host a variety of magnetic field topologies. If the magnetic topology trends across the HR diagram are confirmed they may provide a new method of constraining PMS stellar evolution models.
Source arXiv, 1206.5238
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica