Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

19 April 2024
 
  » arxiv » 1207.0008

 Article overview


Constraints on the Compact Object Mass in the Eclipsing HMXB XMMU J013236.7+303228 in M33
Varun Bhalerao ; Marten H van Kerkwijk ; Fiona Harrison ;
Date 29 Jun 2012
AbstractWe present optical spectroscopic measurements of the eclipsing High Mass X-ray Binary XMMU J013236.7+303228 in M33. Based on spectra taken at multiple epochs of the 1.73d binary orbital period we determine physical as well as orbital parameters for the donor star. We find the donor to be a B1.5IV sub-giant with effective temperature T=22,000-23,000 K. From the luminosity, temperature and known distance to M33 we derive a radius of R = 8.9 pm 0.5 R_sun. From the radial--velocity measurements, we determine a velocity semi-amplitude of K_opt = 63 pm 12 km/sec. Using the physical properties of the B-star determined from the optical spectrum, we estimate the star’s mass to be M_opt = 11 pm 1 M_sun. Based on the X-ray spectrum, the compact companion is likely a neutron star, although no pulsations have yet been detected. Using the spectroscopically derived B-star mass we find the neutron star companion mass to be M_X = 2.0 pm 0.4 M_sun, consistent with the neutron star mass in the HMXB Vela X-1, but heavier than the canonical value of 1.4 M_sun found for many millisecond pulsars. We attempt to use as an additional constraint that the B star radius inferred from temperature, flux, and distance, should equate the Roche radius, since the system accretes by Roche lobe overflow. This leads to substantially larger masses, but from trying to apply the technique to known systems, we find that the masses are consistently overestimated. Attempting to account for that in our uncertainties, we derive M_X = 2.2^{+0.8}_{-0.6} M_sun and M_opt =13 pm 4 M_sun. We conclude that precise constraints require detailed modeling of the shape of the Roche surface.
Source arXiv, 1207.0008
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica