Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 1207.0082

 Article overview



Direct current superconducting quantum interferometers with asymmetric shunt resistors
M. Rudolph ; J. Nagel ; J.M. Meckbach ; M. Kemmler ; M. Siegel ; K. Ilin ; D. Koelle ; R. Kleiner ;
Date 30 Jun 2012
AbstractWe have investigated asymmetrically shunted Nb/Al-AlO$_x$/Nb direct current (dc) superconducting quantum interference devices (SQUIDs). While keeping the total resistance $R$ identical to a comparable symmetric SQUID with $R^{-1} = R_1^{-1} + R_2^{-1}$, we shunted only one of the two Josephson junctions with $R = R_{1,2}/2$. Simulations predict that the optimum energy resolution $epsilon$ and thus also the noise performance of such an asymmetric SQUID can be 3--4 times better than that of its symmetric counterpart. Experiments at a temperature of 4.2,K yielded $epsilon approx 32,hbar$ for an asymmetric SQUID with an inductance of $22, m{pH}$. For a comparable symmetric device $epsilon = 110,hbar$ was achieved, confirming our simulation results.
Source arXiv, 1207.0082
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica