Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

18 April 2024
 
  » arxiv » astro-ph/0303640

 Article overview


Envelope Emission in Young Stellar Systems: A Sub-Arcsecond Survey of Circumstellar Structure
Leslie Looney ; Lee Mundy ; & Jack Welch ;
Date 28 Mar 2003
Journal Astrophys.J. 592 (2003) 255-265
Subject astro-ph
AffiliationUniv. of Illinois, Urbana-Champaign), Lee Mundy (Univ. of Maryland), & Jack Welch (Univ. of California, Berkeley
AbstractWe present modeling results for six of the eleven deeply embedded systems from our sub-arcsecond 2.7 mm wavelength continuum interferometric survey. The modeling, performed in the uv plane, assumes dust properties, allows for a power-law density profile, uses a self-consistent, luminosity conserving temperature profile, and has an embedded point source to represent a circumstellar disk. Even though we have the highest spatial resolution to date at these wavelengths, only the highest signal-to-noise systems can adequately constrain the simple self-similar collapse models. Of the six sources modeled, all six were fit with a density power-law index of 2.0; however, in half of the systems, those with the highest signal-to-noise, a density power-law index of 1.5 can be rejected at the 95% confidence level. Further, we modeled the systems using the pure Larson-Penston (LP) and Shu solutions with only age and sound speed as parameters. Overall, the LP solution provides a better fit to the data, both in likelihood and providing the observed luminosity, but the age of the systems required by the fits are surprising low (1000-2000 yrs). We suggest that either there is some overall time scaling of the self-similar solutions that invalidate the age estimates, or more likely we are at the limit of the usefulness of these models. With our observations we have begun to reach the stage where models need to incorporate more of the fundamental physics of the collapse process, probably including magnetic fields and/or turbulence. In addition to constraining collapse solutions, our modeling allows the separation of large-scale emission from compact emission, enabling the probing of the circumstellar disk component embedded within the protostellar envelope.
Source arXiv, astro-ph/0303640
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica