Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » astro-ph/0304218

 Article overview


The Contribution of Particle Impact to the Production of Fe K Emission from Accreting Black Holes
D.R. Ballantyne ; A.C. Fabian ;
Date 11 Apr 2003
Journal Astrophys.J. 592 (2003) 1089-1099
Subject astro-ph
AffiliationCITA, Toronto), A.C. Fabian (IoA, Cambridge
AbstractThe iron K line is perhaps the most important spectral diagnostic available in the study of accreting black holes. The line is thought to result from the reprocessing of external X-rays by the surface of the accretion disk. However, as is observed in the solar corona, illumination by energetic particles may also produce line emission. In principle, such a process may be uncorrelated with the observed X-rays and could explain some of the unexpected variability behavior of the Fe line. This paper compares predictions of iron K flux generated by impacting electrons and protons to that from photoionization. Non-thermal power-laws of electrons are considered as well as thermal distributions of electrons and virialized protons. The electrons are thought to originate in a magnetically dominated accretion disk corona, while the protons are considered in the context of a two phase (hot/cold) accretion scenario. In each case, the Fe K flux from particle impact is found to be < 1% of that produced by photoionization by a hard X-ray power-law (normalized to the same energy flux as the particles). Thus, the electrons or protons must strike the disk with 100--10,000 times more energy flux than radiation for particle impact to be a significant producer of Fe K flux. This situation is difficult to reconcile with the observations of hard X-ray spectra, or the proposed particle acceleration mechanisms in the accretion disk corona. Truncated accretion flows must be externally illuminated by hard X-rays in order to produce the Fe line, as proton impact is very inefficient in generating line emission. In contrast to the Sun, our conclusion is that, with the possible exception for localized regions around magnetic footpoints, particle impact will not be an important contributor to the X-ray emission in accreting black holes.
Source arXiv, astro-ph/0304218
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica