Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » 1208.4250

 Article overview


Multisite spectroscopic seismic study of the beta Cep star V2052 Oph: inhibition of mixing by its magnetic field
M. Briquet ; C. Neiner ; C. Aerts ; T. Morel ; S. Mathis ; D.R. Reese ; H. Lehmann ; R. Costero ; J. Echevarria ; G. Handler ; E. Kambe ; R. Hirata ; S. Masuda ; D. Wright ; S. Yang ; O. Pintado ; D. Mkrtichian ; B.-C. Lee ; I. Han ; A. Bruch ; P. De Cat ; K. Uytterhoeven ; K. Lefever ; J. Vanautgaerden ; B. de Batz ; Y. Frémat ; H. Henrichs ; V.C. Geers ; C. Martayan ; A.M. Hubert ; O. Thizy ; A. Tijani ;
Date 21 Aug 2012
AbstractWe used extensive ground-based multisite and archival spectroscopy to derive observational constraints for a seismic modelling of the magnetic beta Cep star V2052 Ophiuchi. The line-profile variability is dominated by a radial mode (f_1=7.14846 d^{-1}) and by rotational modulation (P_rot=3.638833 d). Two non-radial low-amplitude modes (f_2=7.75603 d^{-1} and f_3=6.82308 d^{-1}) are also detected. The four periodicities that we found are the same as the ones discovered from a companion multisite photometric campaign (Handler et al. 2012) and known in the literature. Using the photometric constraints on the degrees l of the pulsation modes, we show that both f_2 and f_3 are prograde modes with (l,m)=(4,2) or (4,3). These results allowed us to deduce ranges for the mass (M in [8.2,9.6] M_o) and central hydrogen abundance (X_c in [0.25,0.32]) of V2052 Oph, to identify the radial orders n_1=1, n_2=-3 and n_3=-2, and to derive an equatorial rotation velocity v_eq in [71,75] km s^{-1}. The model parameters are in full agreement with the effective temperature and surface gravity deduced from spectroscopy. Only models with no or mild core overshooting (alpha_ov in [0,0.15] local pressure scale heights) can account for the observed properties. Such a low overshooting is opposite to our previous modelling results for the non-magnetic beta Cep star theta Oph having very similar parameters, except for a slower surface rotation rate. We discuss whether this result can be explained by the presence of a magnetic field in V2052 Oph that inhibits mixing in its interior.
Source arXiv, 1208.4250
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica