Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

19 April 2024
 
  » arxiv » 1208.6502

 Article overview


The Age-Redshift Relation For Luminous Red Galaxies Obtained From the Full Spectrum Fitting and Its Cosmological Implications
Gaochao Liu ; Youjun Lu ; Xuelei Chen ; Yongheng Zhao ; Wei Du ; Xianmin Meng ;
Date 31 Aug 2012
AbstractThe relative age of galaxies at different redshifts can be used to infer the Hubble parameter and put constraints on cosmological models. We select 23,883 quiescent luminous red galaxies (LRGs) from the SDSS DR7 and divide them into four sub-samples according to their velocity dispersions and each sub-sample is further divided into 12 redshift bins. The spectra of the LRGs in each redshift and velocity bin are co-added in order to obtain a combined spectrum with relatively high $S/N$. Adopting the GalexEV/SteLib model, we estimate the mean ages of the LRGs from these combined spectra by the full-spectrum fitting method. We check the reliability of the estimated age by using Monte-Carlo simulations and find that the estimates are robust and reliable. Assuming that the LRGs in each sub-sample and each redshift bin were on average formed at the same time, the Hubble parameter at the present time $H_0$ is estimated from the age--redshift relation obtained for each sub-sample, which is compatible with the $H_0$ value measured by other methods. We demonstrate that a systematic bias (up to $sim 20%$) may be introduced to the $H_0$ estimation because of recent star formation in the LRGs due to the later major mergers at $zla 0.4$, but this bias may be negligible for those sub-samples with large velocity dispersions. Using the age--redshift relations obtained from the sub-sample with the largest velocity dispersion or the two sub-samples with high velocity dispersions, we find $H_0= 65^{+7}_{-3}kmsmpc$ or $H_0= 74^{+5}_{-4}kmsmpc$ by assuming a spatially flat $Lambda$CDM cosmology. With upcoming surveys, such as the Baryon Oscillation Spectroscopic Survey (BOSS), even larger samples of quiescent massive LRGs may be obtained, and thus the Hubble parameter can be measured with high accuracy through the age--redshift relation.
Source arXiv, 1208.6502
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica