Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

19 April 2024
 
  » arxiv » astro-ph/0305148

 Article overview


Chandra Observations of Expanding Shells in the Dwarf Starburst Galaxy NGC 3077
Juergen Ott ; Crystal L. Martin ; Fabian Walter ;
Date 9 May 2003
Journal Astrophys.J. 594 (2003) 776-797
Subject astro-ph
AbstractDeep Chandra observations (53 ks, ACIS-S3) of NGC 3077, a starburst dwarf galaxy in the M 81 triplet, resolve the X-ray emission from several supershells. The emission is brightest in the cavities defined by expanding shells detected previously in H alpha emission (Martin 1998). Thermal emission models fitted to the data imply temperatures ranging from ~1.3 to 4.9 x 10^(6) K and indicate that the strongest absorption is coincident with the densest clouds traced by CO emission. The fitted emission measures give pressures of P/k~10^(5-6) xi^(-0.5) f_(v)^(-0.5) K cm^(-3) (xi: metallicity of the hot gas in solar units, f_(v): volume filling factor). Despite these high pressures, the radial density profile of the hot gas is not as steep as that expected in a freely expanding wind (e.g., as seen in the neighboring starburst galaxy M 82) implying that the hot gas is still confined by the H alpha shells. The chaotic dynamical state of NGC 3077 undermines reliable estimates of the escape velocity. The more relevant quantity for the ultimate fate of the outflow is probably the gas density in the rich intragroup medium. Based on the HI distribution of NGC 3077 and a connected tidal tail we argue that the wind has the potential to leave the gravitational well of NGC 3077 to the north but not to the south. The total 0.3-6.0 keV X-ray luminosity is ~2-5 x 10^(39) erg s^(-1) (depending on the selected thermal plasma model). Most (~85%) of the X-ray luminosity in NGC 3077 comes from the hot interstellar gas; the remainder comes from six X-ray point sources. In spite of previous claims to the contrary, we do not find X-ray emission originating from the prominent tidal tail near NGC 3077.
Source arXiv, astro-ph/0305148
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica