Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

24 April 2024
 
  » arxiv » astro-ph/0306386

 Article overview



A preference for a non-zero neutrino mass from cosmological data
S.W. Allen ; R.W. Schmidt ; S.L. Bridle ;
Date 19 Jun 2003
Journal Mon.Not.Roy.Astron.Soc. 346 (2003) 593
Subject astro-ph hep-ph
AffiliationIoA Cambridge), R.W. Schmidt (Potsdam University) and S.L. Bridle (IoA Cambridge
AbstractWe present results from the analysis of cosmic microwave background (CMB), large scale structure (galaxy redshift survey) and X-ray galaxy cluster (baryon fraction and X-ray luminosity function) data, assuming a geometrically flat cosmological model and allowing for tensor components and a non-negligible neutrino mass. From a combined analysis of all data, assuming three degenerate neutrinos species, we measure a contribution of neutrinos to the energy density of the universe, Omega_nu h^2=0.0059^{+0.0033}_{-0.0027} (68 per cent confidence limits), with zero falling on the 99 per cent confidence limit. This corresponds to ~4 per cent of the total mass density of the Universe and implies a species-summed neutrino mass sum_i m_i =0.56^{+0.30}_{-0.26} eV, or m_nu~0.2 eV per neutrino. We examine possible sources of systematic uncertainty in the results. Combining the CMB, large scale structure and cluster baryon fraction data, we measure an amplitude of mass fluctuations on 8h^{-1} Mpc scales of sigma_8=0.74^{+0.12}_{-0.07}, which is consistent with measurements based on the X-ray luminosity function and other studies of the number density and evolution of galaxy clusters. This value is lower than that obtained when fixing a negligible neutrino mass (sigma_8=0.86^{+0.08}_{-0.07}). The combination of CMB, large scale structure and cluster baryon fraction data also leads to remarkably tight constraints on the Hubble constant, H_0=68.4^{+2.0}_{-1.4} km/s/Mpc, mean matter density, Omega_m =0.31pm0.02 and physical baryon density, Omega_b h^2=0.024pm0.001, of the Universe.
Source arXiv, astro-ph/0306386
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica