Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

26 April 2024
 
  » arxiv » astro-ph/9606004

 Article overview



Simulated VLBI Images From Relativistic Hydrodynamic Jet Models
Amy J. Mioduszewski ; Philip A. Hughes ; G. Comer Duncan ;
Date 3 Jun 1996
Subject astro-ph
AffiliationUniversity of Michigan) and G. Comer Duncan (Bowling Green State University
AbstractA series of simulated maps showing the appearance in total intensity of flows computed using a recently developed relativistic hydrodynamic code (Duncan Hughes 1994: ApJ, 436, L119) are presented. The radiation transfer calculations were performed by assuming the flow is permeated by a magnetic field and fast particle distribution in energy equipartition, with energy density proportional to the hydrodynamic energy density (i.e., pressure). We find that relativistic flows subject to strong perturbations exhibit a density structure consisting of a series of nested bow shocks, and that this structure is evident in the intensity maps for large viewing angles. However, for viewing angles $<30^{circ}$, differential Doppler boosting leads to a series of axial knots of emission, similar to the pattern exhibited by many VLBI sources. The appearance of VLBI knots is determined primarily by the Doppler boosting of parts of a more extended flow. To study the evolution of a perturbed jet, a time series of maps was produced and an integrated flux light curve created. The light curve shows features characteristic of a radio loud AGN: small amplitude variations and a large outburst. We find that in the absence of perturbations, jets with a modest Lorentz factor ($sim 5$) exhibit complex intensity maps, while faster jets (Lorentz factor $sim 10$) are largely featureless. We also study the appearance of kiloparsec jet-counterjet pairs by producing simulated maps at relatively large viewing angles; we conclude that observed hot spot emission is more likely to be associated with the Mach disk than with the outer, bow shock.
Source arXiv, astro-ph/9606004
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica