Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » 1210.6215

 Article overview


Pure connection formalism for gravity: Feynman rules and the graviton-graviton scattering
Gianluca Delfino ; Kirill Krasnov ; Carlos Scarinci ;
Date 23 Oct 2012
AbstractWe continue to develop the pure connection formalism for gravity. We derive the Feynman rules for computing the connection correlation functions, as well as the prescription for obtaining the Minkowski space graviton scattering amplitudes from the latter. The present formalism turns out to be significantly simpler than the one based on the metric in many aspects. The most drastic difference with the usual approach is that the conformal factor of the metric, which is a source of difficulties in the metric treatment, does not propagate in the connection formulation even off-shell. This simplifies both the linearized theory and the interactions. For comparison, in our approach the complete off-shell cubic GR interaction contains just 3 terms, with only a single term relevant at tree level. This should be compared to at least a dozen terms in the metric formalism. We put the technology developed to use and compute the simplest graviton-graviton scattering amplitudes. For GR we reproduce the well-known result. For our other, distinct from GR, interacting theories of massless spin 2 particles we obtain non-zero answers for some parity-violating amplitudes. Thus, in the convention that all particles are incoming, we find that the 4 minus, as well as the 3 minus 1 plus amplitudes are zero (as in GR), but the amplitudes with 4 gravitons of positive helicity, as well as the 3 plus 1 minus amplitudes are different from zero. This serves as a good illustration of the type of parity violation present in these theories. We find that the parity-violating amplitudes are important at high energies, and that a general parity-violating member of our class of theories "likes" one helicity (negative in our conventions) more than the other in the sense that at high energies it tends to convert all present gravitons into those of negative helicity.
Source arXiv, 1210.6215
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica