Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'488'730
Articles rated: 2609

29 March 2024
 
  » arxiv » 1210.8255

 Article overview


Early evolution of the birth cluster of the solar system
Susanne Pfalzner ;
Date 31 Oct 2012
AbstractThe solar system was most likely born in a star cluster containing at least 1000 stars. It is highly probable that this cluster environment influenced various properties of the solar system like its chemical composition, size and the orbital parameters of some of its constituting bodies. In the Milky Way, clusters with more than 2000 stars only form in two types - starburst clusters and leaky clusters - each following a unique temporal development in the mass-radius plane. The aim is here to determine the encounter probability in the range relevant to solar system formation for starburst or leaky cluster environments as a function of cluster age. N-body methods are used to investigate the cluster dynamics and the effect of gravitational interactions between cluster members on young solar-type stars surrounded by discs. Using the now available knowledge of the cluster density at a given cluster age it is demonstrated that in starburst clusters the central densities over the first 5Myr are so high (initially > 10^5 Msun pc^{-3}) that hardly any discs with solar system building potential would survive this phase. This makes a starburst clusters an unlikely environment for the formation of our solar system. Instead it is highly probable that the solar system formed in a leaky cluster (often classified as OB association). It is demonstrated that an encounter determining the characteristic properties existing in our solar systems most likely happened very early on (< 2Myr) in its formation history and that after 5Myr the likelihood of a solar-type star experiencing such an encounter in a leaky cluster is negligible even if it was still part of the bound remnant. This explains why the solar system could develop and maintain its high circularity later in its development.
Source arXiv, 1210.8255
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica