Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » 1211.0282

 Article overview


A Magnetic Confinement vs. Rotation Classification of Massive-Star Magnetospheres
V. Petit ; S. P. Owocki ; G. A. Wade ; D. H. Cohen ; J. O. Sundqvist ; M. Gagné ; J. Maíz Apellániz ; M. E. Oksala ; D. A. Bohlender ; Th. Rivinius ; H. F. Henrichs ; E. Alecian ; R. H. D. Townsend ; A. ud-Doula ; MiMeS Collaboration ;
Date 1 Nov 2012
AbstractBuilding on results from the Magnetism in Massive Stars (MiMeS) project, this paper shows how a two-parameter classification of massive-star magnetospheres in terms of the magnetic wind confinement (which sets the Alfv’en radius RA) and stellar rotation (which sets the Kepler co-rotation radius RK) provides a useful organisation of both observational signatures and theoretical predictions. We compile the first comprehensive study of inferred and observed values for relevant stellar and magnetic parameters of 64 confirmed magnetic OB stars with Teff > 16 kK. Using these parameters, we locate the stars in the magnetic confinement-rotation diagram, a log-log plot of RK vs. RA. This diagram can be subdivided into regimes of centrifugal magnetospheres (CM), with RA > RK, vs. dynamical magnetospheres (DM), with RK > RA. We show how key observational diagnostics, like the presence and characteristics of Halpha emission, depend on a star’s position within the diagram, as well as other parameters, especially the expected wind mass-loss rates. In particular, we identify two distinct populations of magnetic stars with Halpha emission: namely, slowly rotating O-type stars with narrow emission consistent with a DM, and more rapidly rotating B-type stars with broader emission associated with a CM. For O-type stars, the high mass-loss rates are sufficient to accumulate enough material for line emission even within the relatively short free-fall timescale associated with a DM: this high mass-loss rate also leads to a rapid magnetic spindown of the stellar rotation. For the B-type stars, the longer confinement of a CM is required to accumulate sufficient emitting material from their relatively weak winds, which also lead to much longer spindown timescales. [abbreviated]
Source arXiv, 1211.0282
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica