Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'503'724
Articles rated: 2609

24 April 2024
 
  » arxiv » astro-ph/0307142

 Article overview


An XMM-Newton and Chandra investigation of the nuclear accretion in the Sombrero Galaxy (NGC4594)
S. Pellegrini ; A. Baldi ; G. Fabbiano ; D.W. Kim ;
Date 8 Jul 2003
Journal Astrophys.J. 597 (2003) 175-185
Subject astro-ph
Affiliation Astronomy Department, Bologna University, Italy, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
AbstractWe present an analysis of the XMM-Newton and Chandra ACIS-S observations of the LINER nucleus of the Sombrero galaxy and we discuss possible explanations for its very sub-Eddington luminosity by complementing the X-ray results with high angular resolution observations in other bands. The X-ray investigation shows a hard (Gamma=1.89) and moderately absorbed (N_H=1.8 10^21 cm^-2) nuclear source of 1.5 10^40 erg s^-1 in the 2-10 keV band, surrounded by hot gas at a temperature of sim 0.6 keV. The bolometric nuclear luminosity is at least sim 200 times lower than expected if mass accreted on the supermassive black hole, that HST shows to reside at the center of this galaxy, at the rate predicted by the spherical and adiabatic Bondi accretion theory and with the high radiative efficiency of a standard accretion disc. The low luminosity, coupled to the observed absence of Fe-K emission in the nuclear spectrum, indicates that such a disc is not present. This nucleus differs from bright unobscured AGNs also for the lack of high flux variability and of prominent broad Halpha emission. However, it is also too faint for the predictions of simple radiatively inefficient accretion taking place at the Bondi rate; it could be too radio bright, instead, for radiatively inefficient accretion that includes strong mass outflows or convection. This discrepancy could be solved by the possible presence of nuclear radio jets. An alternative explanation of the low luminosity, in place of radiative inefficiency, could be unsteady accretion.
Source arXiv, astro-ph/0307142
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica