Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

19 April 2024
 
  » arxiv » 1212.1193

 Article overview


Quadrature interferometry for nonequilibrium ultracold bosons in optical lattices
Eite Tiesinga ; Philip R. Johnson ;
Date 5 Dec 2012
AbstractWe develop an interferometric technique for making time-resolved measurements of field-quadrature operators for nonequilibrium ultracold bosons in optical lattices. The technique exploits the internal state structure of magnetic atoms to create two subsystems of atoms in different spin states and lattice sites. A Feshbach resonance turns off atom-atom interactions in one spin subsystem, making it a well-characterized reference state, while atoms in the other subsystem undergo nonequilibrium dynamics for a variable hold time. Interfering the subsystems via a second beam-splitting operation, time-resolved quadrature measurements on the interacting atoms are obtained by detecting relative spin populations. The technique can provide quadrature measurements for a variety of Hamiltonians and lattice geometries (e.g., cubic, honeycomb, superlattices), including systems with tunneling, spin-orbit couplings using artificial gauge fields, and higher-band effects. Analyzing the special case of a deep lattice with negligible tunneling, we obtain the time evolution of both quadrature observables and their fluctuations. As a second application, we show that the interferometer can be used to measure atom-atom interaction strengths with super-Heisenberg scaling n^(-3/2) in the mean number of atoms per lattice site, and standard quantum limit scaling M^(-1/2) in the number of lattice sites. In our analysis, we require M >> 1 and for realistic systems n is small, and therefore the scaling in total atom number N=nM is below the Heisenberg limit; nevertheless, measurements testing the scaling behaviors for interaction-based quantum metrologies should be possible in this system.
Source arXiv, 1212.1193
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica