Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » astro-ph/9606079

 Article overview



New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields
Lennox L. Cowie ; Antoinette Songaila ; Esther M. Hu ; J. G. Cohen ;
Date 13 Jun 1996
Journal Astron.J. 112 (1996) 839
Subject astro-ph
AffiliationUniversity of Hawaii, Institute for Astronomy) and J. G. Cohen (California Institute of Technology
AbstractWe present the results of spectroscopic studies with the LRIS spectrograph on Keck of two of the Hawaii deep survey fields. The 393 objects observed cover an area of 26.2 square arcmin and constitute a nearly complete sample down to K = 20, I = 23, and B = 24.5. The rest-frame K-band luminosity function and its evolution with redshift are described. Comparisons are made with other optically selected (B and I) samples in the literature, and the corresponding rest-frame B-band luminosity function evolution is presented. The B-band counts near B = 24 are shown to be a mixture of normal galaxies at modest redshifts and galaxies undergoing rapid star formation, which have a wide range of masses and which are spread over the redshift interval from z = 0.2 to beyond z = 1.7. The luminosity functions, number counts, and color distributions at optical and IR wavelengths are discussed in terms of a consistent picture of the star-forming history of the galaxy sample. [OII] emission-line diagnostics or rest-frame ultra-violet--infrared color information are used in combination with rest-frame absolute K magnitudes to construct a ``fundamental plane’’ in which the evolution of the global star-formation rate with redshift can be shown, and we find that the maximum rest-frame K luminosity of galaxies undergoing rapid star formation has been declining smoothly with decreasing redshift from a value near L* at z > 1. This smooth decrease in the characteristic luminosity of galaxies dominated by star formation can simultaneously account for the high B-band galaxy counts at faint magnitudes and the redshift distribution at z < 1 in both the B- and K-selected samples. Finally, the overall K-band light density evolution is discussed as a tracer of the baryonic mass in stars and compared with the rate of star formation.
Source arXiv, astro-ph/9606079
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica