Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'488'730
Articles rated: 2609

29 March 2024
 
  » arxiv » astro-ph/0309309

 Article overview


Spectropolarimetry and Modeling of the Eclipsing T Tauri Star KH 15D
Eric Agol ; Aaron Barth ; Sebastian Wolf ; David Charbonneau ;
Date 11 Sep 2003
Journal Astrophys.J. 600 (2004) 781-788
Subject astro-ph
AffiliationUniversity of Washington), Aaron Barth, Sebastian Wolf, David Charbonneau (Caltech
AbstractKH 15D is a strongly variable T Tauri star in the young star cluster NGC 2264 that shows a decrease in flux of 3.5 magnitudes lasting for 18 days and repeating every 48 days. The eclipsing material is likely due to orbiting dust or rocky bodies in a partial ring or warped disk that periodically occults the star. We measured the polarized spectrum in and out of eclipse at the Keck and Palomar observatories. Outside of the eclipse, the star exhibited low polarization consistent with zero. During eclipse, the polarization increased dramatically to ~2% across the optical spectrum, while the spectrum had the same continuum shape as outside of eclipse and exhibited emission lines of much larger equivalent width, as previously seen. From the data, we conclude that (a) the scattering region is uneclipsed; (b) the scattering is nearly achromatic; (c) the star is likely completely eclipsed so that the flux during eclipse is entirely due to scattered light, a conclusion also argued for by the shape of the ingress and egress. We argue that the scattering is not due to electrons, but may be due to large dust grains of size ~10 micron, similar to the interplanetary grains which scatter the zodiacal light. We construct a warped-disk model with an extended dusty atmosphere which reproduces the main features of the lightcurve, namely (a) a gradual decrease before ingress due to extinction in the atmosphere (similar for egress); (b) a sharper decrease within ingress due to the optically-thick base of the atmosphere; (c) a polarized flux during eclipse which is 0.1% of the total flux outside of eclipse, which requires no fine-tuning of the model. (abridged)
Source arXiv, astro-ph/0309309
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica