Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

19 April 2024
 
  » arxiv » astro-ph/0311173

 Article overview


HE0107-5240, A Chemically Ancient Star.I. A Detailed Abundance Analysis
N. Christlieb ; B. Gustafsson ; A. J. Korn ; P. S. Barklem ; T. C. Beers ; M. S. Bessell ; T. Karlsson ; M. Mizuno-Wiedner ;
Date 7 Nov 2003
Journal Astrophys.J. 603 (2004) 708-728
Subject astro-ph
AffiliationUppsala Astronomical Observatory and Hamburger Sternwarte), B. Gustafsson (Uppsala Astronomical Observatory), A. J. Korn (Universitaets-Sternwarte Muenchen and Uppsala Astronomical Observatory), P. S. Barklem (Uppsala Astronomical Observatory), T. C. B
AbstractWe report a detailed abundance analysis for HE0107-5240, a halo giant with [Fe/H]_NLTE=-5.3. This star was discovered in the course of follow-up medium-resolution spectroscopy of extremely metal-poor candidates selected from the digitized Hamburg/ESO objective-prism survey. On the basis of high-resolution VLT/UVES spectra, we derive abundances for 8 elements (C, N, Na, Mg, Ca, Ti, Fe, and Ni), and upper limits for another 12 elements. A plane-parallel LTE model atmosphere has been specifically tailored for the chemical composition of {he}. Scenarios for the origin of the abundance pattern observed in the star are discussed. We argue that HE0107-5240 is most likely not a post-AGB star, and that the extremely low abundances of the iron-peak, and other elements, are not due to selective dust depletion. The abundance pattern of HE0107-5240 can be explained by pre-enrichment from a zero-metallicity type-II supernova of 20-25M_Sun, plus either self-enrichment with C and N, or production of these elements in the AGB phase of a formerly more massive companion, which is now a white dwarf. However, significant radial velocity variations have not been detected within the 52 days covered by our moderate-and high-resolution spectra. Alternatively, the abundance pattern can be explained by enrichment of the gas cloud from which HE0107-5240 formed by a 25M_Sun first-generation star exploding as a subluminous SNII, as proposed by Umeda & Nomoto (2003). We discuss consequences of the existence of HE0107-5240 for low-mass star formation in extremely metal-poor environments, and for currently ongoing and future searches for the most metal-poor stars in the Galaxy.
Source arXiv, astro-ph/0311173
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica