Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'503'724
Articles rated: 2609

23 April 2024
 
  » arxiv » astro-ph/0312216

 Article overview


Star Formation and Feedback in Dwarf Galaxies
Shawfeng Dong ; D. N. C. Lin ; S. D. Murray ;
Date 8 Dec 2003
Journal Astrophys.J. 596 (2003) 930
Subject astro-ph
AbstractWe examine the star formation history and stellar feedback effects of dwarf galaxies under the influence of extragalactic ultraviolet radiation. We consider the dynamical evolution of gas in dwarf galaxies using a one-dimensional, spherically symmetric, Lagrangian numerical scheme to compute the effects of radiative transfer and photoionization. We include a physically-motivated star formation recipe and consider the effects of feedback. Our results indicate that star formation in the severe environment of dwarf galaxies is a difficult and inefficient process. For intermediate mass systems, such as the dSphs around the Galaxy, star formation can proceed with in early cosmic epochs despite the intense background UV flux. Triggering processes such as merger events, collisions, and tidal disturbance can lead to density enhancements, reducing the recombination timescale, allowing gas to cool and star formation to proceed. However, the star formation and gas retention efficiency may vary widely in galaxies with similar dark matter potentials, because they depend on many factors, such as the baryonic fraction, external perturbation, IMF, and background UV intensity. We suggest that the presence of very old stars in these dwarf galaxies indicates that their initial baryonic to dark matter content was comparable to the cosmic value. This constraint suggests that the initial density fluctuation of baryonic matter may be correlated with that of the dark matter. For the more massive dwarf elliptical galaxies, the star formation efficiency and gas retention rate is much higher. Their mass to light ratio is regulated by star formation feedback, and is expected to be nearly independent of their absolute luminosity. The results of our theoretical models reproduce the observed $M/L-M_v$ correlation.
Source arXiv, astro-ph/0312216
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica