Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » astro-ph/0312265

 Article overview


Neutron Star Kicks from Asymmetric Collapse
Chris L. Fryer ;
Date 10 Dec 2003
Journal Astrophys.J. 601 (2004) L175-L178
Subject astro-ph
AbstractMany neutron stars are observed to be moving with spatial velocities, in excess of 500km/s. A number of mechanisms have been proposed to give neutron stars these high velocities. One of the leading classes of models proposed invokes asymmetries in the core of a massive star just prior to collapse. These asymmetries grow during the collapse, causing the resultant supernova to also be asymmetric. As the ejecta is launched, it pushes off (or ``kicks’’) the newly formed neutron star. This paper presents the first 3-dimensional supernova simulations of this process. The ejecta is not the only matter that kicks the newly-formed neutron star. Neutrinos also carry away momentum and the asymmetric collapse leads also to asymmetries in the neutrinos. However, the neutrino asymmetries tend to damp out the neutron star motions and even the most extreme asymmetric collapses presented here do not produce final neutron star velocities above 200km/s.
Source arXiv, astro-ph/0312265
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica