Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » 1305.3176

 Article overview


A GIANO-TNG high resolution IR spectrum of the airglow emission
E. Oliva ; L. Origlia ; R. Maiolino ; C. Baffa ; V. Biliotti ; P. Bruno ; G. Falcini ; V. Gavriousev ; F. Ghinassi ; E. Giani ; M. Gonzalez ; F. Leone ; M. Lodi ; F. Massi ; P. Montegriffo ; I. Mochi ; M. Pedani ; E. Rossetti ; S. Scuderi ; M. Sozzi ; A. Tozzi ; E. Valenti ;
Date 14 May 2013
AbstractA flux-calibrated high resolution spectrum of the airglow emission is a practical lambda-calibration reference for astronomical spectral observations. It is also useful for constraining the molecular parameters of the OH molecule and the physical conditions in the upper mesosphere. methods: We use the data collected during the first technical commissioning of the GIANO spectrograph at the Telescopio Nazionale Galileo (TNG). The high resolution (R~50,000) spectrum simultaneously covers the 0.95-2.4 micron wavelength range. Relative flux calibration is achieved by the simultaneous observation of spectrophotometric standard star. results: We derive a list of improved positions and intensities of OH infrared lines. The list includes Lambda-split doublets many of which are spectrally resolved. Compared to previous works, the new results correct errors in the wavelengths of the Q-branch transitions. The relative fluxes of OH lines from different vibrational bands show remarkable deviations from theoretical predictions: the Deltav=3,4 lines are a factor of 2 and 4 brighter than expected. We also find evidence of a significant fraction (1-4%) of OH molecules with ’’non-thermal’’ population of high-J levels. Finally we list wavelengths and fluxes of 153 lines not attributable to OH. Most of these can be associated to O2, while 37 lines in the H band are not identified. The O2 and unidentified lines in the H band account for ~5% of the total airglow flux in this band.
Source arXiv, 1305.3176
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica