Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » 1305.6891

 Article overview


Quantum Friction: Cooling Quantum Systems with Unitary Time Evolution
Aurel Bulgac ; Michael McNeil Forbes ; Kenneth J. Roche ; Gabriel Wlazłowski ;
Date 29 May 2013
AbstractWe introduce a type of quantum dissipation -- local quantum friction -- by adding to the Hamiltonian a local potential that breaks time-reversal invariance so as to cool the system. Unlike the Kossakowski-Lindblad master equation, local quantum friction directly effects unitary evolution of the wavefunctions rather than the density matrix: it may thus be used to cool fermionic many-body systems with thousands of wavefunctions that must remain orthogonal. In addition to providing an efficient way to simulate quantum dissipation and non-equilibrium dynamics, local quantum friction coupled with adiabatic state preparation significantly speeds up many-body simulations, making the solution of the time-dependent Schr"odinger equation significantly simpler than the solution of its stationary counterpart.
Source arXiv, 1305.6891
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica