Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'503'724
Articles rated: 2609

23 April 2024
 
  » arxiv » 1306.4585

 Article overview


GRB 081007 and GRB 090424: the surrounding medium, outflows and supernovae
Zhi-Ping Jin ; Stefano Covino ; Massimo Della Valle ; Patrizia Ferrero ; Dino Fugazza ; Daniele Malesani ; Andrea Melandri ; Elena Pian ; Ruben Salvaterra ; David Bersier ; Sergio Campana ; Zach Cano ; Paolo D'Avanzo ; Johan P. U. Fynbo ; Cristiano Guidorzi ; Joshua B. Haislip ; Jens Hjorth ; Aaron P. LaCluyze ; Gianni Marconi ; Paolo A. Mazzali ; Silvia Piranomonte ; Daniel E. Reichart ; Gianpiero Tagliaferri ; Nial R. Tanvir ; Stefano Valenti ; Susanna D. Vergani ; Thomas Vestrand ; Emma S. Walker ; Przemyslaw Wozniak ;
Date 19 Jun 2013
AbstractWe discuss the results of the analysis of multi-wavelength data for the afterglows of GRB 081007 and GRB 090424, two bursts detected by Swift. One of them, GRB 081007, also shows a spectroscopically confirmed supernova, SN 2008hw, which resembles SN 1998bw in its absorption features, while the maximum luminosity is only about half as large as that of SN 1998bw. Bright optical flashes have been detected in both events, which allows us to derive solid constraints on the circumburst-matter density profile. This is particularly interesting in the case of GRB 081007, whose afterglow is found to be propagating into a constant-density medium, yielding yet another example of a GRB clearly associated with a massive star progenitor which did not sculpt the surroundings with its stellar wind. There is no supernova component detected in the afterglow of GRB 090424, likely due to the brightness of the host galaxy, comparable to the Milky Way. We show that the afterglow data are consistent with the presence of both forward- and reverse-shock emission powered by relativistic outflows expanding into the interstellar medium. The absence of optical peaks due to the forward shock strongly suggests that the reverse shock regions should be mildly magnetized. The initial Lorentz factor of outflow of GRB 081007 is estimated to be Gamma ~ 200, while for GRB 090424 a lower limit of Gamma > 170 is derived. We also discuss the prompt emission of GRB 081007, which consists of just a single pulse. We argue that neither the external forward-shock model nor the shock-breakout model can account for the prompt emission data and suggest that the single-pulse-like prompt emission may be due to magnetic energy dissipation of a Poynting-flux dominated outflow or to a dissipative photosphere.
Source arXiv, 1306.4585
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica