Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

29 March 2024
 
  » arxiv » 1306.5005

 Article overview


Signal Transmission Across Tile Assemblies: 3D Static Tiles Simulate Active Self-Assembly by 2D Signal-Passing Tiles
Jacob Hendricks ; Jennifer E. Padilla ; Matthew J. Patitz ; Trent A. Rogers ;
Date 20 Jun 2013
AbstractThe 2-Handed Assembly Model (2HAM) is a tile-based self-assembly model in which, beginning from single tiles, arbitrarily large aggregations of static tiles combine in pairs to form structures. The Signal-passing Tile Assembly Model (STAM) is an extension of the 2HAM in which the tiles are dynamically changing components which are able to alter their binding domains as they bind together. In this paper, we prove that there exists a 3D tile set in the 2HAM which is intrinsically universal for the class of all 2D STAM+ systems at temperature 1 and 2 (where the STAM+ does not make use of the STAM’s power of glue deactivation and assembly breaking, as the tile components of the 2HAM are static and unable to change or break bonds). This means that there is a single tile set U in the 3D 2HAM which can, for an arbitrarily complex STAM+ system S, be configured with a single input configuration which causes U to exactly simulate S at a scale factor dependent upon S. Furthermore, this simulation uses only 2 planes of the third dimension. To achieve this result, we also demonstrate useful techniques and transformations for converting an arbitrarily complex STAM+ tile set into an STAM+ tile set where every tile has a constant, low amount of complexity, in terms of the number and types of "signals" they can send, with a trade off in scale factor. While the first result is of more theoretical interest, showing the power of static tiles to simulate dynamic tiles when given one extra plane in 3D, the second is of more practical interest for the experimental implementation of STAM tiles, since it provides potentially useful strategies for developing powerful STAM systems while keeping the complexity of individual tiles low, thus making them easier to physically implement.
Source arXiv, 1306.5005
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica