Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » 1306.6334

 Article overview


The Mass-Metallicity Relation Of A Z~2 Protocluster With MOSFIRE
Kristin R. Kulas ; Ian S. McLean ; Alice E. Shapley ; Charles C. Steidel ; Nicholas P. Konidaris ; Keith Matthews ; Gregory N. Mace ; Gwen C. Rudie ; Ryan F. Trainor ; Naveen A. Reddy ;
Date 26 Jun 2013
AbstractWe present Keck/MOSFIRE observations of the role of environment in the formation of galaxies at z~2. Using K-band spectroscopy of H-alpha and [N II] emission lines, we have analyzed the metallicities of galaxies within and around a z=2.3 protocluster discovered in the HS1700+643 field. Our main sample consists of 23 protocluster and 20 field galaxies with estimates of stellar masses and gas-phase metallicities based on the N2 strong-line metallicity indicator. With these data we have examined the mass-metallicity relation (MZR) with respect to environment at z~2. We find that field galaxies follow the well-established trend between stellar mass and metallicity, such that more massive galaxies have larger metallicities. The protocluster galaxies, however, do not exhibit a dependence of metallicity on mass, with the low-mass protocluster galaxies showing an enhancement in metallicity compared to field galaxies spanning the same mass range. A comparison with galaxy formation models suggests that the mass-dependent environmental trend we observed can be qualitatively explained in the context of the recycling of "momentum-driven" galaxy wind material. Accordingly, winds are recycled on a shorter timescale in denser environments, leading to an enhancement in metallicity at fixed mass for all but the most massive galaxies. Future hydrodynamical simulations of z~2 overdensities matching the one in the HS1700 field will be crucial for understanding the origin of the observed environmental trend in detail.
Source arXiv, 1306.6334
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica