Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'503'724
Articles rated: 2609

24 April 2024
 
  » arxiv » 1308.1762

 Article overview


Spatial mixing and approximation algorithms for graphs with bounded connective constant
Alistair Sinclair ; Piyush Srivastava ; Yitong Yin ;
Date 8 Aug 2013
AbstractThe hard core model in statistical physics is a probability distribution on independent sets in a graph in which the weight of any independent set I is proportional to lambda^(|I|), where lambda > 0 is the vertex activity. We show that there is an intimate connection between the connective constant of a graph and the phenomenon of strong spatial mixing (decay of correlations) for the hard core model; specifically, we prove that the hard core model with vertex activity lambda < lambda_c(Delta + 1) exhibits strong spatial mixing on any graph of connective constant Delta, irrespective of its maximum degree, and hence derive an FPTAS for the partition function of the hard core model on such graphs. Here lambda_c(d) := d^d/(d-1)^(d+1) is the critical activity for the uniqueness of the Gibbs measure of the hard core model on the infinite d-ary tree. As an application, we show that the partition function can be efficiently approximated with high probability on graphs drawn from the random graph model G(n,d/n) for all lambda < e/d, even though the maximum degree of such graphs is unbounded with high probability.
We also improve upon Weitz’s bounds for strong spatial mixing on bounded degree graphs (Weitz, 2006) by providing a computationally simple method which uses known estimates of the connective constant of a lattice to obtain bounds on the vertex activities lambda for which the hard core model on the lattice exhibits strong spatial mixing. Using this framework, we improve upon these bounds for several lattices including the Cartesian lattice in dimensions 3 and higher.
Our techniques also allow us to relate the threshold for the uniqueness of the Gibbs measure on a general tree to its branching factor (Lyons, 1989).
Source arXiv, 1308.1762
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica