Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

19 April 2024
 
  » arxiv » 1309.6538

 Article overview


Higgs boson mass, neutrino masses and mixing and keV dark matter in an $U(1)_R-$ lepton number model
Sabyasachi Chakraborty ; Sourov Roy ;
Date 25 Sep 2013
AbstractWe discuss neutrino masses and mixing in the framework of a supersymmetric model with an $U(1)_{R}$ symmetry, consisting of a single right handed neutrino superfield with an appropriate R charge. The lepton number ($L$) of the standard model fermions are identified with the negative of their R-charges. As a result, a subset of leptonic R-parity violating operators can be present and are consistent with the $U(1)_R$ symmetry. This model can produce one light Dirac neutrino mass at the tree level without the need of introducing a very small neutrino Yukawa coupling. We analyze the scalar sector of this model in detail paying special attention to the mass of the lightest Higgs boson. One of the sneutrinos might acquire a substantial vacuum expectation value leading to interesting phenomenological consequences. Different sum rules involving the physical scalar masses are obtained and we show that the lightest Higgs boson mass receives a contribution proportional to the square of the neutrino Yukawa coupling $f$. This allows for a 125 GeV Higgs boson at the tree level for $f sim {cal O} (1)$ and still having a small tree level mass for the active neutrino. In order to fit the experimental results involving neutrino masses and mixing angles we introduce a small breaking of $U(1)_R$ symmetry, in the context of anomaly mediated supersymmetry breaking. In the presence of this small R-symmetry breaking, light neutrino masses receive contributions at the one-loop level involving the R-parity violating interactions. We also identify the right handed sterile neutrino as a warm dark matter candidate in our model. In the case of R-symmetry breaking, the large $f$ case is characterized by a few hundred MeV lightest neutralino as an unstable lightest supersymmetric particle (LSP) and we briefly discuss the cosmological implications of such a scenario.
Source arXiv, 1309.6538
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica