Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » 1310.1922

 Article overview


The Mean Star-Forming Properties of QSO Host Galaxies
D. J. Rosario ; B. Trakhtenbrot ; D. Lutz ; H. Netzer ; J. R. Trump ; J. D. Silverman ; M. Schramm ; E. Lusso ; S. Berta ; A. Bongiorno ; M. Brusa ; N. M. Förster-Schreiber ; R. Genzel ; S. Lilly ; B. Magnelli ; V. Mainieri ; R. Maiolino ; A. Merloni ; M. Mignoli ; R. Nordon ; P. Popesso ; M. Salvato ; P. Santini ; L. J. Tacconi ; G. Zamorani ;
Date 7 Oct 2013
AbstractQuasi-stellar objects (QSOs) occur in galaxies in which supermassive black holes (SMBHs) are growing substantially through rapid accretion of gas. Many popular models of the co-evolutionary growth of galaxies and SMBHs predict that QSOs are also sites of substantial recent star formation, mediated by important processes, such as major mergers, which rapidly transform the nature of galaxies. A detailed study of the star-forming properties of QSOs is a critical test of such models. We present a far-infrared Herschel/PACS study of the mean star formation rate (SFR) of a sample of spectroscopically observed QSOs to z~2 from the COSMOS extragalactic survey. This is the largest sample to date of moderately luminous AGNs studied using uniform, deep far-infrared photometry. We study trends of the mean SFR with redshift, black hole mass, nuclear bolometric luminosity and specific accretion rate (Eddington ratio). To minimize systematics, we have undertaken a uniform determination of SMBH properties, as well as an analysis of important selection effects within spectroscopic QSO samples that influence the interpretation of SFR trends. We find that the mean SFRs of these QSOs are consistent with those of normal massive star-forming galaxies with a fixed scaling between SMBH and galaxy mass at all redshifts. No strong enhancement in SFR is found even among the most rapidly accreting systems, at odds with several co-evolutionary models. Finally, we consider the qualitative effects on mean SFR trends from different assumptions about the star-forming properties of QSO hosts and redshift evolution of the SMBH-galaxy relationship. While limited currently by uncertainties, valuable constraints on AGN-galaxy co-evolution can emerge from our approach.
Source arXiv, 1310.1922
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica