Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

18 April 2024
 
  » arxiv » cond-mat/0307511

 Article overview


A Class of $P,T$-Invariant Topological Phases of Interacting Electrons
Michael Freedman ; Chetan Nayak ; Kirill Shtengel ; Kevin Walker ; Zhenghan Wang ;
Date 22 Jul 2003
Subject Strongly Correlated Electrons | cond-mat.str-el
AbstractWe describe a class of parity- and time-reversal-invariant topological states of matter which can arise in correlated electron systems in 2+1-dimensions. These states are characterized by particle-like excitations exhibiting exotic braiding statistics. $P$ and $T$ invariance are maintained by a `doubling’ of the low-energy degrees of freedom which occurs naturally without doubling the underlying microscopic degrees of freedom. The simplest examples have been the subject of considerable interest as proposed mechanisms for high-$T_c$ superconductivity. One is the `doubled’ version (i.e. two opposite-chirality copies) of the U(1) chiral spin liquid. The second example corresponds to $Z_2$ gauge theory, which describes a scenario for spin-charge separation. Our main concern, with an eye towards applications to quantum computation, are richer models which support non-Abelian statistics. All of these models, richer or poorer, lie in a tightly-organized discrete family. The physical inference is that a material manifesting the $Z_2$ gauge theory or a doubled chiral spin liquid might be easily altered to one capable of universal quantum computation. These phases of matter have a field-theoretic description in terms of gauge theories which, in their infrared limits, are topological field theories. We motivate these gauge theories using a parton model or slave-fermion construction and show how they can be solved exactly. The structure of the resulting Hilbert spaces can be understood in purely combinatorial terms. The highly-constrained nature of this combinatorial construction, phrased in the language of the topology of curves on surfaces, lays the groundwork for a strategy for constructing microscopic lattice models which give rise to these phases.
Source arXiv, cond-mat/0307511
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica