Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'503'724
Articles rated: 2609

23 April 2024
 
  » arxiv » 1310.8080

 Article overview


Molecules in the transition disk orbiting T Cha
G.G. Sacco ; J.H. Kastner ; T. Forveille ; D. Principe ; R. Montez Jr. ; B. Zuckerman ; P. Hily-Blant ;
Date 30 Oct 2013
AbstractWe seek to establish the presence and properties of gas in the circumstellar disk orbiting T Cha, a nearby (d~110 pc), relatively evolved (age ~5-7 Myr) yet actively accreting 1.5 Msun T Tauri star. We used the APEX 12 m radiotelescope to search for submillimeter molecular emission from the T Cha disk, and we reanalyzed archival XMM-Newton spectroscopy of T Cha to ascertain the intervening absorption due to disk gas along the line of sight to the star (N_H). We detected submillimeter rotational transitions of 12CO, 13CO, HCN, CN and HCO+ from the T Cha disk. The 12CO line appears to display a double-peaked line profile indicative of Keplerian rotation. Analysis of the CO emission line data indicates that the disk around T Cha has a mass (M_disk,H_2 = 80 M_earth) similar to, but more compact (R_disk, CO~80 AU) than, other nearby, evolved molecular disks (e.g. V4046 Sgr, TW Hya, MP Mus) in which cold molecular gas has been previously detected. The HCO+/13CO and HCN/13CO, line ratios measured for T Cha appear similar to those of other evolved circumstellar disks (i.e. TW Hya and V4046 Sgr), while the CN/13CO ratio appears somewhat weaker. Analysis of the XMM-Newton data shows that the atomic absorption $N_H$ toward T Cha is 1-2 orders of magnitude larger than toward the other nearby T Tauri with evolved disks. Furthermore, the ratio between atomic absorption and optical extinction N_H/A_V toward T Cha is higher than the typical value observed for the interstellar medium and young stellar objects in the Orion Nebula Cluster. This may suggest that the fraction of metals in the disk gas is higher than in the interstellar medium. Our results confirm that pre-main sequence stars older than ~5 Myr, when accreting, retain cold molecular disks, and that those relatively evolved disks display similar physical and chemical properties.
Source arXiv, 1310.8080
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica