Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'502'364
Articles rated: 2609

23 April 2024
 
  » arxiv » cond-mat/0308305

 Article overview


Nonequilibrium Dynamics of Optical Lattice-Loaded BEC Atoms: Beyond HFB Approximation
Ana Maria Rey ; B. L. Hu ; Esteban Calzetta ; Albert Roura ; Charles Clark ;
Date 15 Aug 2003
Subject Soft Condensed Matter | cond-mat.soft
AbstractIn this work a two-particle irreducible (2PI) closed-time-path (CTP) effective action is used to describe the nonequilibrium dynamics of a Bose Einstein condensate (BEC) selectively loaded into every third site of a one-dimensional optical lattice. The motivation of this work is the recent experimental realization of this system at National Institute of Standards and Technology (NIST) where the placement of atoms in an optical lattice is controlled by using an intermediate superlattice. Under the 2PI CTP scheme with this initial configuration, three different approximations are considered: a) the Hartree-Fock-Bogoliubov (HFB) approximation, b) the next-to-leading order 1/$mathcal{N}$ expansion of the 2PI effective action up to second order in the interaction strength and c) a second order perturbative expansion in the interaction strength. We present detailed comparisons between these approximations and determine their range of validity by contrasting them with the exact many body solution for a moderate number of atoms and wells. As a general feature we observe that because the second order 2PI approximations include multi-particle scattering in a systematic way, they are able to capture damping effects exhibited in the exact solution that a mean field collisionless approach fails to produce. While the second order approximations show a clear improvement over the HFB approximation our numerical result shows that they do not work so well at late times, when interaction effects are significant.
Source arXiv, cond-mat/0308305
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica