Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

24 April 2024
 
  » arxiv » 1311.4195

 Article overview



Small vs large dust grains in transitional disks: do different cavity sizes indicate a planet?
Antonio Garufi ; Sascha P Quanz ; Henning Avenhaus ; Esther Buenzli ; Carsten Dominik ; Farzana Meru ; Michael R Meyer ; Paola Pinilla ; Hans Martin Schmid ; Sebastian Wolf ;
Date 17 Nov 2013
AbstractTransitional disks represent a short stage of the evolution of circumstellar material. Studies of dust grains in these objects can provide pivotal information on the mechanisms of planet formation. Dissimilarities in the spatial distribution of small (micron-size) and large (millimeter-size) dust grains have recently been pointed out. Constraints on the small dust grains can be obtained by imaging the distribution of scattered light at near-infrared wavelengths. We aim at resolving structures in the surface layer of transitional disks (with particular emphasis on the inner 10 - 50 AU), thus increasing the scarce sample of high resolution images of these objects. We obtained VLT/NACO near-IR high-resolution polarimetric differential imaging observations of SAO 206462 (HD135344B). This technique allows one to image the polarized scattered light from the disk without any occulting mask and to reach an inner working angle of 0.1’’. A face-on disk is detected in H and Ks bands between 0.1’’ and 0.9’’. No significant differences are seen between the H and Ks images. In addition to the spiral arms, these new data allow us to resolve for the first time an inner cavity for small dust grains. The cavity size (about 28 AU) is much smaller than what is inferred for large dust grains from (sub)mm observations (39 to 50 AU). The interaction between the disk and potential orbiting companion(s) can explain both the spiral arm structure and the discrepant cavity sizes for small and large dust grains. One planet may be carving out the gas (and, thus, the small grains) at 28 AU, and generating a pressure bump at larger radii (39 AU), which holds back the large grains. We analytically estimate that, in this scenario, a single giant planet (with a mass between 5 and 15 Jupiter masses) at 17 to 20 AU from the star is consistent with the observed cavity sizes.
Source arXiv, 1311.4195
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica